
2024-05-12-OhmJS Example Use-Case
Introduction	
2

Overview	
4
Description	
7

Appendix - See Also	 13

1

Introduction

This example contains a snippet of code written in a “new” language (an SCN) 1

taken out of context from the file https://github.com/guitarvydas/das2json/blob/
main/das2json.swib.

This .swib snippet is the 2nd rule in that file.

The file is used to generate stand-alone Python code (just Python code, not
Python intertwined with 0D).

 Solution Centric Notation - like a DSL sans steroids.1

2

DSL (das2json.swib)

https://github.com/guitarvydas/das2json/blob/main/das2json.swib
https://github.com/guitarvydas/das2json/blob/main/das2json.swib

Running “make” compiles all of das2json.swib into Python code, then runs the
Python code with input from test.drawio. The full code for all of the above is
available in the repository and runs.

The input is a stream of XML (the file test.drawio contains a special purpose
variant of XML called graphML). The
Python code parses the input XML and
outputs the same XML with some parts
removed .
2

This parser works in a streaming manner. It does not create a parse tree, and,
therefore, can handle input files of any size. On the other hand, it cannot - by
default - walk the parse up and down and back again the way a tree walker can
do. In this kind of parser, time is not reversible and any actions taken during the
parse cannot be - easily - undone.

I will discuss only this snippet, hoping that the rest of the code will be
understandable after this explanation.  

 The final goal is to rewrite the graphML heavily, leaving in only the semantically interesting 2

bits (boxes, ports, connections, names).

3

Overview

This is a rough attempt to show how a simple DSL is mapped into stand-
alone, working Python code. I call this kind of simplistic DSL a notation, an
“SCN” for short. “SCN” stands for Solution Centric Notation.

In this case, a “domain expert”
wants to think about writing a
parser. The parser is expressed
using an SCN (called

das2json.swib). The SCN is
targeted only at the idea of what
text needs to be matched. The
niggly details required to do this
kind of matching in a general
purpose language - Python in this case - are ignored.

A t2t transpiler (essentially a simplistic compiler) is used to map the DSL
into full-blown Python including all of the niggly details that were ignored
by the “domain expert” when writing the specification in the SCN.

This is the basis of FDD - Failure Driven Development. The idea is that a
programmer writes code that writes code. Keeping the SCN small makes it
possible to regenerate all of the code at the push of a button. The effect is
that the programmer can iterate and refine the design, knowing that
changing code is easy. The programmer tweaks the code in the SCN, while

4

the system (the development IDE) regenerates all of the code needed to

realize the full-blown application. This is the way that compilers work -
programmers write programs in HLL syntax and the compiler converts the
HLL into runnable assembler code. At the core, compilation is just t2t (text
to text transpilation).

The rest of this essay contains a more thorough, wordy, sequential
breakdown of this particular SCN and includes a reference to the github
repository.

5

Generated Python code uses a library Manually written Python library

FDD is described in more detail in https://guitarvydas.github.io/2021/04/23/
Failure-Driven-Design.html.

6

https://guitarvydas.github.io/2021/04/23/Failure-Driven-Design.html
https://guitarvydas.github.io/2021/04/23/Failure-Driven-Design.html

Description

The goal of das2json.swib is to specify a text parser using fewer lines of code
than would be required when writing a parser in pure Python. In this newly-
invented SCN, we can only talk about parsing. The SCN does not support all of
the other general operations available in Python. I claim that it is easier to focus
on a single problem at a time - in this case, parsing (aka “pattern matching”) -
and, avoid having to think about all of the other general features that are available
in most modern General Purpose programming Languages - GPLs.

Most compiler-compilers use CFG-based technology that is language-oriented by
default. This swib receptor parser, though, is parser-oriented and is just a DSL for
specifying a parser (instead of specifying a language). The grammar, though,
looks very similar to CFG-based approaches. This parser uses a recursive-
descent strategy that allows it to use rules that can mutually invoke each other.
This parser can parse matching pairs of brackets - like PEG-based parsers. CFG-
based approaches can’t do this. I claim that this kind of parsing is more powerful
than CFG-based approaches, but, the differences are subtle.

I’ve chosen a snippet which contains one rule - the rule called “XML”. The intent
is to pattern-match basic XML. This rule is not stand-alone and invokes other
rules. I don’t bother to include or show the other rules. You can see them in the
repository, if you want to look more deeply.

In this SCN, a “rule” generates a single string and returns it. Each rule starts out
with a fresh empty string and fills the string in when it successfully matches
patterns.

At the Python level, this is easy to implement. We make a stack of strings and
push a new empty string onto the stack every time we dynamically enter a rule.
When the rule finishes its work, it pops the string off of the string stack and
pushes it onto a return stack. This SCN uses 2 stacks, not just one. Operation at
the Python level is pretty basic. Any competent Python programmer should know
how to do this kind of thing. There’s no magic here. This SCN limits what you can
do in Python and allows you to focus on only the task at hand.

: XML ^=
 Spaces "<" Name Attributes
 [

7

 | ">": Content "</" Stuff ">"
 | "/>":
]

To read this snippet, we start with :. This is like def but uses 2 fewer characters.
The name of the rule comes next - in this case the rule is called XML. Next comes
the definition operator ^= which says that we will allocate a fresh, empty string for
the rule, then fill it in, then return it. There is at least one other definition operator
- ^@ - but, I’ll skip discussing it here, for simplicity.

The next line specifies that 4 matches must succeed before proceeding with the
3rd line. First, we must invoke the sub-rule Spaces, then match the string “<“,
then invoke another sub-rule Name, then invoke the sub-rule Attributes. Again,
any competent Python programmer already knows how to do this, but this
notation says it in fewer characters than the corresponding Python code. In
Python, sub-rules are invoked by simply calling methods (Space(), Name(), and,
Attributes()). String matching is done with == or a library routine. In our case,
the library routines are found in the file https://github.com/guitarvydas/das2json/
blob/main/receptor.py. The code in the library routines is plain-jane Python code,
with the only nuance being that we make it possible to un-get characters by using
a cache.

After this come a choice operation, lines 3-6. A choice is like a case statement
that pattern matches strings against the input stream. The syntax of choice is a
set of square brackets surrounding several choice legs. A choice leg - basically
an if...elif... - operation begins with a “|” character followed by the string to
be matched followed by a : and a sequence of matches if the choice-leg match
succeeds.

If we see “>”, then we must invoke the sub-rule Content, followed by a match of
“</“, followed by invocation of the sub-rule Stuff, followed by a match of ”>”.

If, instead, we see “/>”, then we don’t match for anything else.

This pattern should match inputs like

<mxCell id=123 style=“...”> <p> Hello </p> </mxCell>

8

https://github.com/guitarvydas/das2json/blob/main/receptor.py
https://github.com/guitarvydas/das2json/blob/main/receptor.py

And

<mxCell is=456 style=“...”/>

Note that we allow matching multi-character strings, like “/>” instead of only
matching for single-character strings like “>”. The idea of matching multi-
character strings makes it necessary to un-get characters and necessitates using
a cache. For example if we see “/X”, we match the “/“ and then fail because “X”
is not “>”. In this case, we need to un-get the “/“ and back up to continue
matching. This is just a low-level implementation detail - you don’t really need to
know how multi-character strings are matched unless you want to understand the
low-level Python code in the library.

As we execute that match, by default, all of the matching characters are
appended to the allocated, fresh string associated with this rule invocation (one
unique, fresh string is created each time a rule is invoked. For example, each time
we call XML(), a fresh string is allocated on the string stack.

At the end of the rule, the modified string is “returned” to the calling rule. The
string is popped off of the string stack and pushed onto the return stack .
3

That’s it. That specifies a parser for XML (along with the sub-rules that I didn’t
bother to copy into this note, but, can be found in the repo).

What Python code is generated for the above snippet?

def XML (_r):
 _r.push_new_string ()
 _r.begin_breadcrumb ("XML")
 Spaces (_r)
 _r.append_returned_string ()
 _r.need_and_append ("<")
 Name (_r)
 _r.append_returned_string ()
 Attributes (_r)
 _r.append_returned_string ()
 if False:
 pass
 elif _r.maybe_append (">"):
 Content (_r)

 Could you do this with only 1 stack? Sure. But, the code would be more complicated. Make it 3

correct first, then optimize it later.

9

 _r.append_returned_string ()
 _r.need_and_append ("</")
 Stuff (_r)
 _r.append_returned_string ()
 _r.need_and_append (">")
 pass
 elif _r.maybe_append ("/>"):
 pass
 _r.end_breadcrumb ("XML")
 return _r.return_string_pop ()

6 lines of SCN generate 24 lines of Python. The SCN allows you to focus on the
problem - pattern-matching the input. The Python code conflates pattern-
matching with niggly details and makes it harder to focus on the main task.

Note that the “breadcrumb” lines are tags that are automatically inserted by the
SCN compiler to help with debugging.

The parsing operations, like .need_and_append (“>”), call library routines found in
receptor.py. These library routines don’t do anything magical, but, they are used
so frequently that I decided to put them into a library.

The code generator is written in OhmJS (grammar) and RWR (rewrite rules
associated with OhmJS). The grammar is in file https://github.com/guitarvydas/
das2json/blob/main/swib.ohm and the rewrite rules are in https://github.com/
guitarvydas/das2json/blob/main/swib.rwr.

Note that, in this case, a trick is used to finish the rewrite . I pass the rewritten 4

code through yet another OhmJS+rwr combination to pull out the name of the
main rule. The trick is in files https://github.com/guitarvydas/das2json/blob/main/
defname.ohm and https://github.com/guitarvydas/das2json/blob/main/
defname.rwr. I insert the Unicode brackets “⎛ ... ⎠” in the first phase - swib.rwr

- to delineate the chunk of text that I want to re-parse. The rest of the text, which
is not delineated, remains untouched. The rule “text” in defname.ohm handles
incoming characters one at a time until a delineated chunk of text is found. The
grammar breaks up the delineated chunk into several pieces and the .rwr rewriter
uses only one of the pieces while throwing the rest away. I could have done this
trick differently, but, I already had access to a parser and it was simpler to simply
use the available parser black box than to code up some scheme that saved the

 see https://guitarvydas.github.io/2024/05/13/Deep-Dive-Into-Rewriting.html4

10

https://guitarvydas.github.io/2024/05/13/Deep-Dive-Into-Rewriting.html
https://github.com/guitarvydas/das2json/blob/main/swib.ohm
https://github.com/guitarvydas/das2json/blob/main/swib.ohm
https://github.com/guitarvydas/das2json/blob/main/swib.rwr
https://github.com/guitarvydas/das2json/blob/main/swib.rwr
https://github.com/guitarvydas/das2json/blob/main/defname.ohm
https://github.com/guitarvydas/das2json/blob/main/defname.ohm
https://github.com/guitarvydas/das2json/blob/main/defname.rwr
https://github.com/guitarvydas/das2json/blob/main/defname.rwr

main function name in some special location. The goal of parsing twice is to help
the developer and the only efficiency consideration is whether the trick works
“fast enough” for the developer on a development machine (which tends to be
more powerful than end-user machines). If we wanted to ship this code as an
end-user product, we might want to spend extra time to optimize the code, but,
there is no reason to optimize this code if it is to be used only by developers and
works “fast enough” for developers.

The pipeline for reading the das2json.swib file and generating Python code from it
is pictured below

To allow the use of existing structured-text based tools (“{...}”), another trick is
used. I generate code as if it is structure-based, using the brackets “(- ... -)”. At
the very end, I run indenter.js to convert the structure-based code into legal
indented Python code. I decided to use ASCII brackets “(- ... -)” instead of

11

Unicode brackets simply because my editor (emacs) knows how to indent
parenthesis-based code, but, doesn’t deal with Unicode brackets (out of the box).
In the early stages of exploring this technology, it made sense to eye-ball the
code and this was made easier when it was indented by emacs.  

12

Appendix - See Also

13

See Also
References https://guitarvydas.github.io/2024/01/06/References.html
Blog https://guitarvydas.github.io/
Blog https://publish.obsidian.md/programmingsimplicity
Videos https://www.youtube.com/@programmingsimplicity2980
[see playlist “programming simplicity”]
Discord https://discord.gg/Jjx62ypR (Everyone welcome to join)
X (Twitter) @paul_tarvydas
More writing (WIP): https://leanpub.com/u/paul-tarvydas

https://guitarvydas.github.io/2024/01/06/References.html
https://guitarvydas.github.io/
https://publish.obsidian.md/programmingsimplicity
https://www.youtube.com/@programmingsimplicity2980
https://discord.gg/Jjx62ypR
https://leanpub.com/u/paul-tarvydas

	Introduction
	Overview
	Description
	Appendix - See Also

